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Abstract

One of the oldest models of schizophrenia is based on the effects of serotonergic hallucinogens such as

mescaline, psilocybin, and (+)-lysergic acid diethylamide (LSD), which act through the serotonin 5-HT2A

receptor. These compounds produce a ‘model psychosis’ in normal individuals that resembles at least

some of the positive symptoms of schizophrenia. Based on these similarities, and because evidence has

emerged that the serotonergic system plays a role in the pathogenesis of schizophrenia in some patients,

animal models relevant to schizophrenia have been developed based on hallucinogen effects. Here we

review the behavioural effects of hallucinogens in four of those models, the receptor and neurochemical

mechanisms for the effects and their translational relevance. Despite the difficulty of modelling hallucino-

gen effects in nonverbal species, animal models of schizophrenia based on hallucinogens have yielded

important insights into the linkage between 5-HT and schizophrenia and have helped to identify receptor

targets and interactions that could be exploited in the development of new therapeutic agents.

Received 9 April 2013; Reviewed 2 May 2013; Revised 30 May 2013; Accepted 31 May 2013;

First published online 13 August 2013

Key words: Habituation, head twitch, interval timing, LSD, prepulse inhibition.

Introduction

Substantial evidence indicates that the serotonergic

system is involved in the pathophysiology of schizo-

phrenia, but determining the exact role that serotonin

(5-HT) plays in the disorder has proven elusive. One

of the oldest models of schizophrenia is based on the

observation that serotonergic hallucinogens can pro-

voke a ‘model psychosis’ in normal humans (Geyer

and Vollenweider, 2008). The German psychiatrist

Kurt Beringer was the first to comment on the simi-

larities between the effects of mescaline and the symp-

toms of schizophrenia (Beringer, 1923, 1927). Although

it was unknown at the time, it is now recognized that

mescaline, (+)-lysergic acid diethylamide (LSD) (Fig. 1),

and other serotonergic hallucinogens exert their

characteristic effects by activating the 5-HT2A receptor

(reviewed by: Halberstadt and Geyer, 2011; Nichols,

2004). Soon after the discovery of LSD by Albert

Hofmann (Stoll and Hofmann, 1943), it was adminis-

tered to volunteers by the psychiatrist Walter Stoll.

Stoll confirmed that LSD produced mescaline-like

effects, but was much more potent, and found that

the effects of LSD resemble the symptoms of schizo-

phrenia (Stoll, 1947). Likewise, as had been proposed

several decades earlier with mescaline (Knauer and

Maloney, 1913), Stoll recommended that psychiatrists

self-experiment with LSD in order to gain insight

into the mental states and experiences of their patients.

Many other groups subsequently characterized the

effects of LSD, mescaline and psilocybin, and con-

cluded that these hallucinogens produced mental

states resembling the earliest phases of schizophrenia

(Bowers and Freedman, 1966; Keeler, 1965; Osmond

and Smythies, 1952; Rinkel et al., 1952, 1955). Other

clinicians, however, noted that differences exist

between the effects of hallucinogens and the symptoms

of schizophrenia, leading them to question the validity

of the model psychosis (Mayer-Gross, 1951). One of

the most prominent critics was Hollister, who argued

that auditory but not visual hallucinations are most

prominent in schizophrenia, whereas the opposite is

true of hallucinogens (Hollister, 1962). Nevertheless,

there are often visual disturbances during the acute

phase of schizophrenia, including hallucinations and

synaesthesias (McCabe et al., 1972; Freedman and

Chapman, 1973). A second criticism made by

Hollister is that hallucinogens rarely produce social

and emotional withdrawal, but these symptoms are
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often found in schizophrenia patients. Subsequent

investigations have shown that hallucinogens some-

times produce withdrawal and catatonia-like states,

especially when administered at higher doses

(Gouzoulis-Mayfrank et al., 1998a).

Since N-Methyl-D-aspartate (NMDA) antagonists

such as phencyclidine (PCP) and ketamine mimic

most aspects of schizophrenia (Halberstadt, 1995; Javitt

and Zukin, 1991; Javitt, 2007), it has been proposed

that these dissociative anaesthetics may be more

appropriate models of schizophrenia. Nevertheless, it

has been argued that NMDA antagonists and seroto-

nergic hallucinogens may model different subtypes of

schizophrenia, with NMDA antagonists producing

effects most similar to the disorganized or undifferen-

tiated subtype of schizophrenia, and hallucinogens

modelling the paranoid subtype (Abi-Saab et al.,

1998). In order to directly compare these two models,

Gouzoulis-Mayfrank conducted a double-blind cross-

over study with S-ketamine and the hallucinogen

N,N-dimethyltryptamine (DMT) in normal volunteers

(Gouzoulis-Mayfrank et al., 2005). This comparison

showed that the effects of DMT primarily resembled

the positive symptoms of schizophrenia, whereas

S-ketamine produced effects that more closely

resembled the negative symptoms of schizophrenia

(Gouzoulis-Mayfrank et al., 2005), indicating that

these drugs model different aspects of schizophrenia.

Gouzoulis-Mayfrank et al. (1998a) have also used the

Altered States of Consciousness (APZ) rating scale to

assess whether psychotic patients experience psy-

chedelic experiences similar to those induced by hallu-

cinogens. The APZ was developed by Dittrich to assess

altered states of consciousness independent of their

etiology (Dittrich, 1998), and is sensitive to the subjec-

tive effects of serotonergic hallucinogens, including

psilocybin, mescaline and DMT (Gouzoulis-Mayfrank

et al., 1999, 2005; Grob et al., 2011; Hermle et al.,

1992; Vollenweider et al., 1997). Patients with acute

schizophrenia, schizophreniform disorder or schizo-

affective disorder had significantly higher APZ scores

than normal controls. Additionally, APZ scores were

found to be significantly correlated with scores on

the Brief Psychiatric Rating Scale, which measures psy-

chotic symptoms. These findings demonstrate that psy-

chotic patients experience hallucinogen-like alterations

of perception and consciousness.

Although the use of hallucinogens as a model of

psychosis was somewhat controversial during the

1950s, there was much less controversy regarding the

possibility that 5-HT itself plays a role in the illness.

Serotonin was first isolated from serum in 1948 by

Rapport (Rapport et al., 1948), and the next year it

was identified as 5-hydroxytryptamine (Rapport,

1949). The similarity of the chemical structures of

5-HT and LSD (Fig. 1), the fact that 5-HT is present

in the brains of dogs, rabbits and rats (Twarog and

Page, 1953), and the finding that LSD blocked the con-

tractile effect of LSD on smooth muscle (Gaddum,

1953), led Woolley and Shaw (1954) to propose that

5-HT plays a role in mental processing and possibly

in the pathogenesis of schizophrenia (Woolley and

Shaw, 1954). The link between 5-HT and schizophrenia

was supported by the subsequent discovery that reser-

pine, an indole alkaloid isolated from Rauwolfia serpen-

tina that has antipsychotic properties (Braun, 1960;

Gore et al., 1957), causes massive depletion of 5-HT

(Pletcher et al., 1955). One of the strongest arguments

for the involvement of 5-HT in schizophrenia was the

discovery of atypical antipsychotics such as clozapine,

risperidone and olanzapine, which act in part by block-

ing 5-HT2A receptors with some selectivity over the

dopamine (DA) D2 receptor (Meltzer et al., 1989;

Meltzer, 1991, 1999; Seeman, 2002). Atypical antipsy-

chotics are associated with a lower risk of extrapyrami-

dal side-effects compared with typical antipsychotics,

which may be attributable at least partially to

5-HT2A antagonism (Abi-Dargham and Krystal, 2000;

Meltzer, 1999; Roth and Meltzer, 2000). Animal studies

have indicated that selective 5-HT2A antagonists have

antipsychotic-like effects (Geyer et al., 2001; Varty

et al., 1999). A subsequent clinical trial confirmed

that the selective 5-HT2A antagonist M100,907 (volin-

anserin, formerly MDL 100,907) was more effective

than placebo at treating schizophrenia, but did not

show significantly greater efficacy than the typical

antipsychotic haloperidol in neuroleptic-responsive

patients (de Paulis, 2001). Development of the

5-HT2A/2C antagonist eplivanserin (SR-46349) as a

Fig. 1. Chemical structures of (+)-lysergic acid diethylamide

(LSD, left panel) and serotonin (right panel).
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treatment for schizophrenia was also discontinued

after it was found to be less effective than haloperidol

in neuroleptic-responsive patients (Meltzer et al., 2004).

Although the antipsychotic efficacy of 5-HT2A antag-

onist monotherapy is apparently rather modest, it is

possible that certain subpopulations of psychotic

patients may respond more favourably. For example,

5-HT2A receptors may play a specific role in psychosis

associated with Parkinson’s disease (Ballanger et al.,

2010; Huot et al., 2010; Mcfarland et al., 2011), and

the 5-HT2A inverse agonist pimavanserin (ACP-103)

reduces delusions and hallucinations in Parkinsonian

patients (Meltzer et al., 2010).

Because of the apparent similarities between the

effects of hallucinogens and some of the symptoms

of schizophrenia, several animal models relevant to

schizophrenia have been developed based on halluci-

nogen effects (Geyer and Moghaddam, 2002; Geyer

and Vollenweider, 2008; Halberstadt and Geyer,

2013b). These models have facilitated investigation of

the role that 5-HT plays in schizophrenia, helped to

characterize important interactions between 5-HT

and other transmitter systems, and identified novel

pharmacotherapeutics that act through receptors for

5-HT and other transmitters. Here, we review four of

the animal behavioural models.

Startle habituation

The startle response is a transient motor response

exhibited by humans and other animal species in

response to loud acoustic stimuli (acoustic startle) or

unexpected tactile stimuli (tactile startle). Repeated

exposure to a startling stimulus often leads to a

marked response decrement, a process known as

habituation (Davis and Heninger, 1972; Groves and

Thompson, 1970; Rankin et al., 2009; Szabo and

Kolta, 1967). Schizophrenia patients often display an

impaired ability to filter out extraneous or irrelevant

stimuli, potentially contributing to the distractibility,

sensory flooding, and cognitive fragmentation found

in many of these patients (McGhie and Chapman,

1961). There is extensive evidence that patients with

schizophrenia display startle reflex habituation deficits

that may contribute to the sensory overload. Compari-

son of the eyeblink component of the acoustic startle

reflex in schizophrenia and control subjects revealed

that startle habituation is significantly impaired in

schizophrenia patients (Geyer and Braff, 1982). Sub-

sequent studies confirmed that habituation of the

startle response evoked by acoustic stimuli or electro-

cutaneous stimulation is deficient in schizophrenia

patients relative to normal controls (Bolino et al.,

1992, 1994; Ludewig et al., 2003; Meincke et al., 2004;

Parwani et al., 2000; Taiminen et al., 2000).

Because habituation is a cross-species phenomenon

that can be assessed in humans and in laboratory

animals using similar procedures, startle habituation

in animals has been used to model the information

processing deficits that occur in schizophrenia. Tactile

and acoustic startle response magnitudes in rats are

increased by a variety of serotonergic hallucinogens,

including members of the indoleamine (LSD, DMT

and psilocin) and phenylalkylamine (mescaline,

2,5-dimethoxy-4-methylamphetamine (DOM), and

2,5-dimethoxy-4-ethylamphetamine (DOET)) chemical

classes (Davis and Sheard, 1974; Geyer et al., 1978).

Importantly, acute administration of LSD to rats

reduced habituation of tactile startle provoked by air-

puffs (Fig. 2) (Geyer et al., 1978; Geyer and Braff,

1987), an effect that is lost when LSD is administered

chronically (Braff and Geyer, 1980). Mescaline also

attenuates habituation of acoustic startle in rats

(Davis, 1987), and this effect is blocked by the

5-HT2A/2C antagonists ritanserin, ketanserin, LY 53857

and cinanserin. Psilocybin, however, did not have sig-

nificant effects on startle reactivity or habituation when

tested in human subjects (Gouzoulis-Mayfrank et al.,

1998c; Quednow et al., 2012; Vollenweider et al., 2007).
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Fig. 2. The effects of LSD on the startle response in rats are

shown for 24 blocks of 10 trials each. Each point represents

the mean startle amplitude. Male Sprague-Dawley rats

(200–250 g) were treated (1ml/kg i.p.) with vehicle (isotonic

saline) or LSD tartrate. After 10min the animals were

placed in a stabilimeter chamber for a 5min acclimation

period, and then exposed to 240 air-puff stimuli (20ms,

50 psi) with a 15 s inter-trial interval. This study was

originally reported in: Geyer and Braff, 1987.
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Prepulse inhibition

The presentation of a weak prestimulus at a brief inter-

val (30–500ms) prior to a startle-inducing stimulus will

attenuate the resulting startle response. This phenom-

enon, known as prepulse inhibition (PPI), has been

used as an operational measure of sensorimotor gating,

and may reflect mechanisms that exist to regulate sen-

sory input by filtering out extraneous or distracting

stimuli (Swerdlow and Geyer, 1998). PPI is a cross-

species phenomenon that is extremely robust, un-

learned and ubiquitous (Geyer et al., 2001; Swerdlow

et al., 2001). Consistent with the view that schizo-

phrenia is a gating or filtering disorder (Carlsson,

1995), PPI has been found to be deficient in schizo-

phrenia patients (Bolino et al., 1994; Braff et al., 1978;

Braff and Geyer, 1990; Ludewig et al., 2003; Parwani

et al., 2000; Quednow et al., 2006).

Animals treated with hallucinogens show reductions

in PPI, indicating that hallucinogens reduce the

gating or filtering of sensory stimuli. LSD, 2,5-

dimethoxy-4-iodoamphetamine (DOI), 2,5-dimethoxy-

4-bromoamphetamine (DOB), and mescaline disrupt

PPI in rats (Halberstadt and Geyer, 2010; Johansson

et al., 1995; Ouagazzal et al., 2001; Pálenícek et al.,

2008; Rigdon and Weatherspoon, 1992; Sipes and

Geyer, 1994; Varty and Higgins, 1995;). The selective

5-HT2A antagonists M100,907 and MDL 11,939 block

the effects of DOI and LSD on PPI (Halberstadt and

Geyer, 2010; Ouagazzal et al., 2001; Padich et al., 1996;

Sipes and Geyer, 1995), whereas 5-HT1A or 5-HT2C

antagonists are ineffective at preventing their effects.

The reduction of PPI induced by DOI is also blocked

by the atypical antipsychotics aripiprazole, risperidone

and clozapine, but not by the D2 antagonist haloperidol

or the D2/3 antagonist raclopride (Kohnomi et al.,

2008; Varty and Higgins, 1995). The hallucinogen

5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT)

also disrupts PPI in rats, but this effect is dependent

on 5-HT1A receptor activation, since it is prevented by

the selective 5-HT1A antagonist WAY-100635 and not

byM100,907 (Krebs-Thomson et al., 2006). The involve-

ment of 5-HT1A receptors in mediating the effects of

5-MeO-DMT on PPI is consistent with numerous

findings that the behavioural effects of 5-MeO-DMT

are primarily attributable to 5-HT1A activation

(Halberstadt et al., 2011; van den Buuse et al., 2011;

Winter et al., 2000).

Lisuride is an LSD congener that acts as a 5-HT2A

agonist but does not have hallucinogenic effects in

humans. González-Maeso et al. (2007) have proposed

that lisuride does not act as a hallucinogen because

of agonist-directed trafficking of 5-HT2A responses;

i.e. certain 5-HT2A agonists are hallucinogenic

because they activate specific signaling pathways

that are not recruited by lisuride. Interestingly,

although both LSD and lisuride disrupt PPI in rats,

they do so by different receptor mechanisms; the PPI

disruption induced by lisuride was not blocked by

MDL 11,939 or the selective 5-HT1A antagonist

WAY-100635, but was prevented by pretreatment

with the selective DA D2/3 receptor antagonist raclo-

pride (Fig. 3; Halberstadt and Geyer, 2010).

Studies in humans have demonstrated that halluci-

nogens can alter PPI, although the effect is highly

dependent on the specific testing parameters used.

One study with psilocybin found that the hallucinogen

increased PPI when a 100ms interstimulus interval

(ISI) was used (Gouzoulis-Mayfrank et al., 1998b).

Another study confirmed that psilocybin increased

PPI at long ISIs (120–2000ms), but also found that psi-

locybin reduced PPI when shorter ISIs of 30ms were

used (Vollenweider et al., 2007). Importantly, the abil-

ity of psilocybin to reduce PPI at a 30ms ISI is comple-

tely blocked by ketanserin (Quednow et al., 2012),

confirming the involvement of 5-HT2A/2C receptors in

mediating this effect. Given the similarity of hallucino-

gen effects on PPI in humans and rats, hallucinogen

effects on PPI have been used as a model of the posi-

tive symptoms of schizophrenia. Importantly, it was

recently reported that specific 5-HT2A polymorphisms

modulate PPI levels in normal volunteers and in

patients with schizophrenia (Quednow et al., 2008,

2009). These findings raise the possibility that changes

in 5-HT2A signaling could contribute to the PPI disrup-

tion observed in schizophrenia.

Head twitch response

Hallucinogens induce stereotypical motor responses in

many mammalian species, including ear scratching

(mice), limb flicks (cats) or head bobs (rabbits). In

rats and mice, administration of a variety of hallucino-

gens produces a paroxysmal rotational head move-

ment known as the head twitch response (HTR)

(Bedard and Pycock, 1977; Canal and Morgan, 2012;

Corne and Pickering, 1967; Halberstadt and Geyer,

2013a; Yamamoto and Ueki, 1975). Although the

HTR is typically assessed by direct observation, and

hence experiments can be time-consuming, it was

recently reported that a head-mounted magnet and a

magnetometer coil can be used to detect the behaviour

with extremely high sensitivity and specificity

(Halberstadt and Geyer, 2013a). The hallucinogen-

induced HTR is blocked by selective 5-HT2A antagon-

ists (Fox et al., 2010; Schreiber et al., 1995) and is absent
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in 5-HT2A knockout mice (González-Maeso et al., 2007;

Halberstadt et al., 2011; Keiser et al., 2009), suggesting

that this behaviour is a consequence of 5-HT2A acti-

vation. 5-HT2A receptors in the prefrontal cortex

(PFC) may be responsible for mediating the HTR

induced by hallucinogens, as evidenced by the fact

that infusion of DOI directly into this region induces

the behaviour in rats (Willins and Meltzer, 1997),

and loss of the HTR in 5-HT2A knockout mice can

be rescued by selective restoration of the receptor in

cortical regions (González-Maeso et al., 2007). In

recent years, the HTR has been widely adopted as a

rodent behavioural proxy for hallucinogen effects in

humans. In fact, there is evidence that the HTR is

one of the few behaviours that can reliably distinguish

hallucinogenic and non-hallucinogenic 5-HT2A

Vehicle

Lisuride 0.0375 Vehicle

Lisuride 0.075 mg/kg

Vehicle

LSD 0.1 mg/kg

Lisuride 0.075

Lisuride 0.15

Vehicle

LSD 0.05

LSD 0.1

LSD 0.2

100

80

70

60

50

40

30

20

10

00

00

MDL 11,939 dose (mg/kg)

0.30.3

00

MDL 11,939 dose (mg/kg)MDL 11,939 dose (mg/kg)

0.30.3

60

40

20

A
v

e
ra

g
e

 %
 p

re
p

u
ls

e
 i

n
h

ib
it

io
n

%
 P

re
p

u
ls

e
 i

n
h

ib
it

io
n

70

60

50

40

30

20

10

00

%
 P

re
p

u
ls

e
 i

n
h

ib
it

io
n

0

100

80

60

40

20

A
v

e
ra

g
e

 %
 p

re
p

u
ls

e
 i

n
h

ib
it

io
n

0

**

** **

**

##

**

** **

**

(b1) (b2)

(a1) (a2)

Fig. 3. Effects of lisuride (a) and LSD (b) on prepulse inhibition in rats. (a1) Effect of lisuride (0.0375, 0.075 and 0.15mg/kg,

s.c.) on average prepulse inhibition. (a2) Effects of the selective 5-HT2A antagonist MDL 11,939 on the disruption of PPI

induced by lisuride. (b1) Effect of LSD (0.05, 0.1 and 0.2mg/kg, s.c.) on average prepulse inhibition. (b2) Effects of the

selective 5-HT2A antagonist MDL 11,939 on the disruption of PPI induced by LSD. Values represent mean±S.E.M. for each

group. Drug doses are mg/kg. *p<0.05, **p<0.01, significantly different from vehicle control; ##p<0.01, significantly different

from LSD-treated animals. Male Sprague–Dawley rats (250–275 g) were placed in a stabilimeter chamber 30min after

treatment with MDL 11,939, 10min after treatment with lisuride hydrogen maleate, or 5min after treatment with LSD

tartrate. After a 5min acclimation period to 65 dB broadband background noise,%prepulse inhibition was assessed using a

combination of startle trials (a 40ms 120 dB pulse of broadband white noise) and prepulse trials (a 20ms acoustic prepulse at

either 68, 71 or 77 dB, an 80ms delay, and then a 40ms 120 dB startle pulse) presented in a pseudo-randomized order. Data

from Halberstadt and Geyer, 2010.
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agonists (González-Maeso et al., 2007). Nevertheless,

there is little evidence to support using the HTR as

an animal model of hallucinations or of mental states

that are directly relevant to schizophrenia. For

example, many non-hallucinogenic compounds that

increase 5-HT release and indirectly activate the

5-HT2A receptor, including d-fenfluramine (Darmani,

1997) and even some benzodiazepines (Tadano et al.,

2001), can induce the HTR. Furthermore, although

many antipsychotics can block the hallucinogen-

induced HTR due to their 5-HT2A antagonist activity,

selective 5-HT2A antagonists such as M100,907 have

only limited efficacy as antipsychotics when adminis-

tered to schizophrenia patients.

There is, however, substantial evidence that the

HTR has utility as a behavioural tool to study the

neural basis for hallucinogen effects, which may have

direct relevance to understanding the positive symp-

toms of schizophrenia. For example, the HTR induced

by DOI in rats and mice is suppressed by the selective

metabotropic glutamate (mGlu)2/3 receptor agonists

LY354740 and LY379268 (Fig. 4) and enhanced by the-

selective mGlu2/3 antagonist LY341495 (Gewirtz

and Marek, 2000; Klodzinska et al., 2002). Likewise,

the mGlu2 positive allosteric modulator (PAM)

biphenyl-indanone A inhibits the HTR induced by

(–)-DOB (Benneyworth et al., 2007). Chronic treatment

with the mGlu2/3 antagonist LY341495 has been shown

to down-regulate cortical 5-HT2A sites and attenuate

the HTR induced by LSD in mice (Moreno et al.,

2013). Deletion of the mGlu2 gene in mice has been

shown to produce a reduction of the HTR to LSD

and DOI and a profound loss of high-affinity 5-HT2A

binding sites in frontal cortex (Moreno et al., 2011a).

Indeed, there is extensive electrophysiological, neuro-

chemical and behavioural evidence that mGlu2/3
receptors regulate the response to 5-HT2A activation

(Benneyworth et al., 2007; Gewirtz et al., 2002;

Klodzinska et al., 2002; Marek et al., 2000; Molinaro

et al., 2009; Winter et al., 2004; Wischhof et al., 2011;

Wischhof and Koch, 2012). These findings are signifi-

cant because there is some evidence that mGlu2/3 ago-

nists may possess antipsychotic efficacy. Although

pomaglumetad methionil (LY2140023; Fig. 4), a meth-

ionine amide prodrug for the selective orthosteric

mGlu2/3 agonist LY404039, reduced schizophrenia

symptoms in an initial phase II trial (Patil et al.,

2007), follow-up studies were either inconclusive

(Kinon et al., 2011) or failed to show evidence for

efficacy (Lilly, 2012). Although Lilly has discontinued

further clinical trials, it appears that the clinical

response to pomaglumetad methionil may depend

on the presence of specific single nucleotide poly-

morphisms (SNPs) in the 5-HT2A receptor (Liu et al.,

2012). Importantly, according to a recent press release,

a phase II trial conducted by Janssen Pharmaceuticals

demonstrated that the selective mGlu2 PAM

ADX71149 (Fig. 5) has efficacy in medicated schizo-

phrenia patients with residual negative symptoms

(Addex, 2012), although peer-reviewed data have yet

to appear in the literature. One potential explanation

Fig. 4. Chemical structures of orthosteric mGlu2/3 receptor agonists.

Fig. 5. Chemical structure of the selective mGlu2 receptor

positive allosteric modulator ADX71149.
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for the interactions between mGlu2 and 5-HT2A is

that these receptors may be co-localized in cortical

neurons, where they can form functional complexes

(Gonzalez-Maeso et al., 2008; Moreno et al., 2012).

There is evidence that the behavioural effects of some

antipsychotic drugs in mice may be directly mediated

by these mGlu2/5-HT2A complexes (Fribourg et al.,

2011). The receptor heterodimers may play a specific

role in mediating the HTR because the loss of the be-

havioural response in mGlu2 knockout mice can be res-

cued by viral-mediated over-expression of mGlu2 in

frontal cortex, whereas expression of a mutated form

of mGlu2 that is incapable of forming complexes with

5-HT2A did not rescue the behaviour (Moreno et al.,

2012). Nonetheless, it is possible that functional or cir-

cuit interactions may actually be involved in mediating

the interactions between 5-HT2A and mGlu2 receptors,

and further work is required to conclusively demon-

strate that mGlu2 and 5-HT2A heterodimers are respon-

sible for mediating the crosstalk between these systems

(Delille et al., 2012, 2013).

Although there is substantial evidence that some

forms of schizophrenia have genetic etiologies,

environmental events, especially during pregnancy,

also play a role. Two rodent models – maternal vari-

able stress and prenatal immune challenge – have

been developed to study whether adverse prenatal

events can produce schizophrenia-like effects. Interest-

ingly, it was recently shown that the HTR is altered

in both models. Maternal variable stress and prenatal

immune activation with polyinosinic:polycytidylic

acid significantly increased the HTR evoked by

DOI in adult mice, and reduced the antipsychotic-like

behavioural effects of the mGlu2/3 agonist LY379268

(Holloway et al., 2013; Moreno et al., 2011b). These

behavioural alterations were accompanied by up-

regulation of the 5-HT2A receptor and down-regulation

of the mGlu2 receptor (Moreno et al., 2011b). A similar

pattern of changes in 5-HT2A and mGlu2 binding and

mRNA expression has been found in the prefrontal

cortex of unmedicated schizophrenia patients post-

mortem (Gonzalez-Maeso et al., 2008; Muguruza

et al., 2012). Gonzalez-Maeso and colleagues have

also reported that crosstalk between mGlu2 and

5-HT2A receptors is altered in schizophrenia patients

(Moreno et al., 2012). Taken together, these findings

indicate that alterations of 5-HT2A receptor signaling

may contribute to the pathophysiology of schizo-

phrenia. However, the finding that the 5-HT2A receptor

is upregulated in schizophrenia needs to be replicated

because numerous post-mortem studies have found

either no change or reductions of 5-HT2A binding site

densities and mRNA expression in the cortex of

schizophrenia patients (reviewed by Quednow et al.,

2010). Likewise, other groups have reported that

cortical mGlu2-like immunoreactivity and mRNA

expression levels are not downregulated in schizo-

phrenia subjects post-mortem (Crook et al., 2002;

Ghose et al., 2008, 2009; Gupta et al., 2005). Although

many of the earlier studies were confounded by anti-

psychotic treatment, which could potentially reduce

5-HT2A expression, PET studies with [18F]altanserin,

[18F]septoperone, or [11C]N-methylspiperone in

antipsychotic-naive subjects found either no change

(Erritzoe et al., 2008; Lewis et al., 1999; Okubo et al.,

2000; Trichard et al., 1998) or reductions (Ngan et al.,

2000; Rasmussen et al., 2010) of radiotracer binding

to cortical 5-HT2A receptors.

Interval timing

The perception of time is essential for survival and

is required for the precise organization of sequences

of activity as well as the anticipation of behavioural

outcomes and future events. Time perception occurs

over multiple timescales, ranging from milliseconds

to days (Buhusi and Meck, 2005), and encompasses a

diverse variety of functions such as sensory and

motor timing and circadian activity. Interval timing

falls within this larger framework of temporal proces-

sing and refers to the discrimination of durations, typi-

cally in the seconds to minutes range. Deficits of timing

have been reported in patients with a variety of neuro-

psychiatric disorders. Given the crucial importance of

temporal processing to the regulation of behaviour

and interaction with the world, timing impairment

would have significant consequences for these patient

populations.

It has been proposed that impaired temporal pro-

cessing is a core deficit of schizophrenia (Bonnot

et al., 2011; Caroll et al., 2008; Ward et al., 2012).

Schizophrenia patients consistently overestimate and

under-produce temporal durations in behavioural

studies (Caroll et al., 2009a,b; Densen, 1977;

Rammsayer, 1990; Tysk, 1983; Wahl and Sieg, 1980;

Waters and Jablensky, 2009), and interval timing is

less accurate and more variable in schizophrenia

patients than in normal controls (Caroll et al., 2008,

2009a,b; Davalos et al., 2003, 2011; Lee et al., 2009;

Tysk, 1984). The fact that the timing deficits occur

over multiple time scales (<100ms to several min-

utes) and have been demonstrated using tasks with

varying degrees of difficulty indicates that the timing

impairment is not a consequence of more general-

ized mnemonic or attentional deficits (Caroll et al.,

2009a,b; Davalos et al., 2011). Furthermore, timing
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impairments occur independently of working memory

deficits (Elvevåg et al., 2003). There is also evidence

that schizophrenia patients show less activation of

brain regions thought to be involved in timing when

performing an auditory time estimation task

(Davalos et al., 2011; Volz et al., 2001). Finally, schizo-

phrenia patients exhibit impaired processing of the

temporal relationship between sensory stimuli (Braus,

2002; Schmidt et al., 2011; Tenckhoff et al., 2002;

Todd, 2006) and impaired ability to predict when

events will occur (Turgeon et al., 2012). Together,

these findings demonstrate that there is a fundamental

deficit of timing and temporal perception in

schizophrenia.

There are several potential functional consequences

of impaired temporal perception in schizophrenia.

Timing deficits could impair perceptual and cognitive

processing and alter the temporal coordination of be-

haviour, contributing to the behavioural disorganiz-

ation, contextually inappropriate behaviour, and

planning deficits observed in schizophrenia. Addition-

ally, accurate temporal perception is required to infer

causality (e.g. Maeda et al., 2012) and the sensory con-

sequences of actions (Waters and Jablensky, 2009). Dis-

turbed interval timing could potentially alter the

perceived sequence of mental thoughts and sensory

events, resulting in erroneous causal attributions

(Haggard et al., 2003; Waters and Jablensky, 2009)

and delusional thinking. Laboratory studies have

shown that even minor changes in inter-sensory tem-

poral relationships can produce perceived violations

of temporal contiguity in normal subjects (Cunning-

ham et al., 2001), and it is possible that changes in tim-

ing in schizophrenia patients could potentially give

rise to feelings that thoughts or actions are being con-

trolled by outside forces.

There is evidence that the serotonergic system

modulates temporal perception and interval timing

(Ho et al., 2002; Sysoeva et al., 2010). One line of

evidence has emerged from the differential-

reinforcement-of-low-rate 72-s (DRL 72-s) paradigm

(in which rats must wait 72 s between responses to

obtain reinforcement), which is used as a screen for

antidepressant drugs. A variety of serotonergic

ligands, including M100,907 and the 5-HT releasing

drug fenfluramine, alter the performance of rats

under the DRL 72-s schedule (Marek et al., 2005;

Richards et al., 1993), which may reflect a change in

the accuracy of temporal discrimination. Additionally,

serotonergic hallucinogens markedly alter the subjec-

tive experience of time (Heimann, 1994). Under the

influence of mescaline or LSD, human subjects

reported that these drugs could speed up or slow

down the passage of time, or even produce a feeling

of timelessness (Beringer, 1927; DeShon et al., 1952;

Hoch et al., 1952; Kenna and Sedman, 1964; Serko,

1913). Boardman and colleagues found that adminis-

tration of low p.o. doses of LSD to volunteers increased

the variability of 1min duration judgments, but did

not consistently produce underestimations or over-

estimations (Boardman et al., 1957). By contrast,

subjects given 1 or 2 μg/kg LSD p.o. reliably under-

produced longer durations (15–240min) (Aronson

et al., 1959). More recent studies have shown that psi-

locybin disrupts interval timing in human volunteers

(Wackermann et al., 2008; Wittmann et al., 2007).

Hallucinogens also disrupt interval timing in rodent

models. Interval timing is often assessed in rodents

using immediate and retrospective timing schedules.

An example of an immediate timing schedule is the

free-operant psychophysical task, where intermittent

reinforcement is provided for responding on two

levers, and the animal must respond on lever A during

the first half of each trial and on lever B during the

second half of the trial (Stubbs, 1980). The discrete-

trials task is an example of a retrospective timing sche-

dule; in this task, a lamp is illuminated for a variable

duration, and then two levers are presented. Respond-

ing on lever A is reinforced if the stimulus duration

is shorter than a specific value; responding on lever B

is reinforced if the stimulus duration is longer than

the value (Body et al., 2002a). For both tasks, timing

is measured by T50 (the time when %B responding

is equal to 50%), a measure of timing accuracy, and

by the Weber fraction, a measure of timing precision.

Since similar tasks are used to assess interval timing

in humans (e.g. Penney et al., 2008; Sysoeva et al.,

2010), the results of these timing tasks are directly

translatable across species. In rats, DOI alters perform-

ance in the free-operant timing task (Body et al., 2003,

2006a,b; Cheung et al., 2007) and the discrete-trials

task (Asgari et al., 2006; Hampson et al., 2010). In the

discrete-trials task, DOI increases the Weber fraction

(indicating increased variability of timing), but does

not consistently displace T50. DOI does not alter

performance on a similar non-temporal task (light-

intensity discrimination), demonstrating that DOI is

specifically altering timing and not the mnemonic or

attentional processes required to perform the task

(Hampson et al., 2010). In the free-operant procedure,

DOI reduced T50, suggesting an increase in the speed

of the internal clock. The effects of DOI on interval tim-

ing are blocked by ketanserin (Asgari et al., 2006;

Body et al., 2003) and M100,907 (Asgari et al., 2006;

Body et al., 2006a,b). It is not clear why DOI has

qualitatively different effects on performance in the
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discrete-trials and free-operant procedures, but it is not

unusual to find that pharmacological agents do not

uniformly alter timing maintained under different

reinforcement schedules (Body et al., 2013). Despite

these differences, it is clear that DOI alters timing in

rats in a 5-HT2A receptor-dependent manner. Fenflura-

mine also disrupts interval timing in rats, and this effect

is blocked by ketanserin (Body et al., 2004), indicating

that endogenous 5-HT alters timing by activating

5-HT2A/2C receptors. 5-HT2A receptor polymorphisms

are linked to altered timing in humans (Sysoeva

et al., 2010), further demonstrating that the 5-HT2A sys-

tem plays an important role in regulating temporal

perception.

Summary and conclusions

Nearly a century has passed since it was first recog-

nized that hallucinogens produce a schizophrenia-like

state that can be used to model psychosis. Since that

time, there have been substantial advances in neuro-

pharmacology and biological psychiatry, but labora-

tory models based on the effects of hallucinogenic

drugs still play an important role in modern work to

characterize the etiology of the illness and identify

novel pharmacotherapeutics. Despite the continuing

use of hallucinogens as models of psychotic disorders,

it could be argued that the most important legacy of

the work with hallucinogens during the first half

of the twentieth century is the recognition that 5-HT

acts as a transmitter substance in the brain and that it

might play a role in the group of schizophrenias.

Although the degree to which serotonergic alterations

contribute to the development and symptoms of

schizophrenia remains unclear, it is now known

the effects of hallucinogens in humans are mediated

primarily by the serotonin 5-HT2A receptor. Impor-

tantly, in the four behavioural models discussed

above – startle habituation, prepulse inhibition of

startle, head twitch response and interval timing –

the 5-HT2A receptor has been identified as playing a

fundamental role in mediating hallucinogen effects.

In addition to the role that the 5-HT2A receptor plays

in mediating hallucinogen effects, this receptor is an

important target of atypical antipsychotic drugs, and

there is at least some evidence that interactions

with this site may contribute to their therapeutic

profile. Moreover, it is now recognized that inter-

actions between 5-HT2A and mGlu receptors may

play a role in the development of schizophrenia and

in the putative antipsychotic efficacy of mGlu2/3

agonists. The fact that an animal behavioural model

based on hallucinogen effects played a major role in

the discovery and characterization of these novel inter-

actions demonstrates the continuing importance of this

type of model and indicates that it will likely be even

more important in the future.
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